Hyper-parameters and tuning values
    Below, we list the configurable hyper-parameters and tuning values defined in the python script to improve the
        machine learning analysis. These hyper-parameters and tuning values
        should be passed in a configuration file. 
            sample_full_options.json is an exemple of configuration file.
    Decision Tree
    
        - max_depths: 10, 50, 80, 100, 150, 200
- max_features: "auto","sqrt", "log2"
- min_samples_leaves: 1, 2, 3, 5, 10
- min_samples_splits : 2, 3, 5, 10
- criteria: "entropy", "gini"
- splitters: "best", "random"
 Look at the 
            documentation to get details about the hyper-parameters
    
    Random Forest
    
        - max_depths: 10, 50, 80, 100, 150, 200
- max_features: "auto","sqrt", "log2"
- min_samples_leaves: 1, 2, 3, 5, 10
- min_samples_splits : 2, 3, 5, 10
- n_estimators: 10, 50, 100, 150, 200
- criteria: "entropy", "gini"
- warm_starts: true, false
 Look at the 
            documentation to get details about the hyper-parameters
    
    KNN
        
            - n_neighbors: 1, 3, 10, 20, 50, 75, 100, 150, 200, 300 xdczcxcxxzxzxx\z                                               hg hjkkkkkkkkkkkkkkkkkkk/jkkmuyuyh6ttj,.ll'k
- weights:"distance", "uniform"
- metrics: "manhattan", "minkowski"
- algorithms : "auto", "ball_tree", "kd_tree", "brute"
 Look at the 
        documentation to get details about the hyper-parameters